
DAGuE: A generic distributed DAG engine

for high performance computing

George Bosilca∗, Aurelien Bouteiller∗, Anthony Danalis∗†, Thomas Herault∗, Pierre Lemarinier∗, Jack Dongarra∗†

∗University of Tennessee Innovative Computing Laboratory
†Oak Ridge National Laboratory

‡University Paris-XI

Abstract—

The frenetic development of the current architectures places a
strain on the current state-of-the-art programming environments.
Harnessing the full potential of such architectures has been a
tremendous task for the whole scientific computing community.

We present DAGuE a generic framework for architecture
aware scheduling and management of micro-tasks on distributed
many-core heterogeneous architectures. Applications we consider
can be represented as a Direct Acyclic Graph of tasks with labeled
edges designating data dependencies. DAGs are represented
in a compact, problem-size independent format that can be
queried on-demand to discover data dependencies, in a totally
distributed fashion. DAGuE assigns computation threads to the
cores, overlaps communications and computations and uses a
dynamic, fully-distributed scheduler based on cache awareness,
data-locality and task priority. We demonstrate the efficiency of
our approach, using several micro-benchmarks to analyze the
performance of different components of the framework, and a
Linear Algebra factorization as a use case.

I. INTRODUCTION AND MOTIVATION

The past few years have witnessed a persistent increase in

the number of cores per CPU and in the use of accelerators.

This trend can only be expected to continue, as hardware

vendors announce chips with as many as 80 cores, multi-GPU

capable compute nodes and potentially a tighter integration

between the accelerators and the processors. While, from a

pure performance viewpoint, this additional performance is

welcome, from a programming perspective it is difficult to

extract additional performance from the available hardware.

To achieve this, an MPI/threads hybrid programming model

is a commonly proposed solution, with MPI processes running

across nodes and multiple threads running on each node. Un-

fortunately, programming hybrid applications is difficult and

error prone. Instead of allowing the application programmers

to focus on algorithmic issues, it encumbers their task with

several low level architectural issues such as load balancing,

memory distribution, cache reuse and memory locality on

non-uniform memory access (NUMA) architectures, and com-

munications/computations overlapping. From a performance

portability point of view these issues are hard to adress in a

generic way, and are yet orthogonal to the algorithm design

computational scientists are interested on.

In this paper, we present DAGuE, a framework for parallel

application developers, that moves the task of addressing

the system specific performance issues from the application

developer to the DAGuE run-time system developer. DAGuE

is a Direct Acyclic Graph (DAG) scheduling engine, where

the nodes of a DAG are sequential computation tasks and the

edges are data communications. Therefore, designing a parallel

application with this framework consists of encapsulating com-

putation tasks into sequential kernels and defining, through a

DAGuE specific language, how these kernels interact with each

other. The algorithm and the data distribution are decoupled,

the runtime system is responsible of mapping the algorithm

on the data at runtime.

DAGuE schedules tasks in a fully distributed and dynamic

fashion. It enables local tasks to make progress waiting only on

data dependencies to other tasks, and no process has a global

knowledge of the execution progress of remote processes. Each

process runs its own instance of the scheduler using a repre-

sentation of the DAG that is problem size independent. The

DAGuE engine utilizes all cores of each node, enabling work

stealing between cores of the same node. Communications

are implicit, thus they are managed by the run-time rather

than the application developer. They follow data dependencies

of the DAG and do not require global synchronization, thus

enabling scalability. A DAGuE user focuses on expressing the

algorithm as a DAG of tasks, and defining how the tasks

should be distributed over the computing resources via the

data distribution. Tools of the framework help her in this task.

The remainder of the paper is organized as follows. Sec-

tion II describes the related work, Section III contains a

detailed description of the DAGuE framework. Finally, Sec-

tion IV gives the experimental results and Section V provides

the conclusion and future work.

II. RELATED WORKS

DAGs have a long history [1] of being used to express par-

allelism and task dependencies in distributed systems, with an

emphasis on grid and peer-to-peer systems [2], [3]. Recently,

several projects [4], [5], [6], [7], [8], mostly in the field of

Linear Algebra, have proposed to use of DAGs as an approach

to tackle the challenges of harnessing the power of multi-

core and hybrid platforms. We distinguish three approaches to

building and managing the DAG during execution: [3] reads

a concise representation of the DAG (in XML), and unrolls

it in memory before scheduling it. [9], [6], [10] modifies the

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.281

1150

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.281

1146

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.281

1146

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.281

1146

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.281

1146

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.281

1151

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.281

1151

1151114711471147114711521152

1152114811481148114811531153

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 10 20 30 40 50 60 70

N
o

rm
al

iz
ed

 D
A

G
u

E
 s

ch
ed

u
lin

g
 p

er
fo

rm
an

ce
(t

o
 t

h
e

id
ea

l p
ar

al
le

liz
at

io
n

 o
f

th
e

se
q

u
en

ti
al

 c
o

d
e)

Task granularity (NxN matrix, computational weight N3)

27 tasks
28 tasks
29 tasks

210 tasks

211 tasks
212 tasks
213 tasks
214 tasks

215 tasks
216 tasks
217 tasks
218 tasks

219 tasks
220 tasks

No Overhead

Fig. 3. Ratio between the time taken by the DAGuE engine to schedule
Nb matrix-matrix multiply of size N ×N and the time taken by the similar
sequential code divided by the number of cores (ideal parallelization)

the data transfers completes, the receiver invokes locally the

dependency resolution function associated with the parent task,

inside the communication thread, with a specific restricted

mask to satisfy only the dependencies related to this particular

transfer. Remote dependencies resolutions are data specific,

not task specific, in order to maximize asynchrony. Tasks

enabled during this process are added to the queue of the first

compute thread, as there are no cache constraints involved.

In the current version, the communications are performed

using MPI. To increase asynchrony, data messages are non-

blocking, point-to-point operations allowing tasks to concur-

rently release remote dependencies, while keeping the maxi-

mum number of concurrent messages limited. The collabora-

tion between the MPI processes is realized using control mes-

sages, short messages containing only the information about

completed tasks. The MPI process pre-posts persistent receives

to handle the control messages for the maximum number of

concurrent tasks completion. Unlike the data messages, there is

no limit to the number of control messages that can be sent, to

avoid deadlocks. This can generate unexpected messages, but

only for small size messages. Due to the rendezvous protocol

described in the previous paragraph, the data payloads are

never unexpected, thus reducing memory consumption from

the network engine and ensuring flow control.

IV. PERFORMANCE EVALUATION

A. Experimental conditions

The Griffon cluster is one of the clusters of the Grid’5000

experimental grid [17]. It is a 648 core machine composed

of 81 dual socket Intel Xeon L5420 quad core processors at

2.5GHz with 16GB of memory, interconnected by a 20Gbs

Infiniband network. Linux 2.6.24 (Debian Sid) is deployed.

The Dancer cluster is a 8 quad core node cluster, based

on a Intel Q9400 2.5Ghz processor, each node with 4GB

of memory. All nodes are connected using a dual Gigabit

Ethernet, and Myrinet 10G. Linux 2.6.31.2 is deployed.

On Dancer and Griffon, the software is compiled using gcc

and gfortran 4.4 with -O3 flags, and uses the OpenMPI 1.4.1,

Plasma 2.1.0 and Intel Math Library MKL-10.1.0.015.

B. Micro benchmarking

1) Scheduling Performance: The first results evaluate the

overhead of the scheduling engine on a single node architec-

ture. Two different simple benchmarks compute Nb repetitions

of a simple task, consisting of a N × N double precision

matrix-matrix multiply. The first benchmark is a sequential

program composed of four nested loops (one loop around Nb,
then the three loops of the matrix-matrix multiply). The second

benchmark is a simple JDF file that generates Nb parallel tasks

consisting of the three inner loops of the matrix multiplication.

Figure 3 plots the ratio between the time taken by the

sequential program with ideal scaling (hence time/p, where

p is the number of cores), and the time taken by the DAGuE

engine for the same number of tasks Nb and matrix size N .

We did all measures on the dancer platform, five times, and

divided each measurement of the DAGuE engine by the fastest

sequential run for the same parameters.

The embarrassingly parallel matrix-matrix multiply is a

stress test for the scheduling engine of DAGuE. An extremely

large number of tasks (up to 2
20) can be scheduled at the

same time. Thus, the waiting queue of the engine is rapidly

filled with ready tasks that have to be scheduled. Thanks to not

unfolding the complete graph, the engine is able to manage

millions of simultaneous tasks without impacting the computa-

tion time. For very small tasks (in the order of microseconds),

the overheads due to dynamic scheduling can exceed the ideal

execution time by a factor of three, suggesting that DAGuE is

best fitted for tasks of a coarser grain. However, the overheads

due to the scheduling infrastructure become rapidly negligible;

for a relatively small work size (a matrix-matrix multiply of

30× 30 doubles takes 44μs on the dancer platform), DAGuE

reaches the ideal parallelization performance projection.

1 PING (k)
2 k = 0 . . NT / / E x e c u t i o n space

3 T <− (k == 0) ? A(0) : I PONG(k−1) [ATYPE]
4 −> (k == NT) ? A(0) : I PONG(k) [ATYPE]
5
6 PONG(k)
7 k = 0 . . NT−1 / / E x e c u t i o n space

8 I <− T PING (k) [ATYPE]
9 −> T PING (k +1) [ATYPE]

10

Fig. 4. JDF representation of the ping pong

2) Communication Performance: The second benchmark

aims at evaluating the communication performance of the

DAGuE engine. We have designed a simple ping pong bench-

mark where a message of variable size is sent from one node

to another, a certain number of times. The JDF representation

of this ping pong is presented in Figure 4. Node 0 (identified

by the predicate 0 == rowRANK) is the only one to execute

the PING(k) task, transmitting a data to the PONG(k) task

that can execute on node 1 only. This data is typed with the

non-default type ATYPE, that is allocated to the desired size

1153114911491149114911541154

by the main program. PING(0) reads its data locally while

PING(k) (k > 0) uses the data sent by PONG(k-1).

We measure the total time t taken to execute this JDF on

two machines, interconnected with 2 Gbs ethernet, then with

Myricom 10Gbs, and finally with Infiniband 20 Gb/s. From

this time t we compute the bandwidth (2×8 ·NT ·S/t) of the

DAGuE engine, where NT is the number of iterations and

S is the size of the data in bytes. In Figure 5 we compare

these measurements with the NetPIPE [18] benchmark using

the same MPI library.

Figure 5 demonstrates a high overhead on latency for

DAGuE, independent of the networks: from a factor of 10 on

the double-1G Ethernet network to a factor of 90 on the MX-

10G network. The current implementation of DAGuE uses

a 3-way rendezvous protocol to move all data; the emitter

first signals the completion of the task to the nodes that will

run a task depending on this completion. The receiver node,

when notified of a completion, allocates resources to receive

the actual data, then requests the data from the emitter, that

finally sends the data. For very small messages, this multiplies

the latency by at least a factor of 3. Moreover, the goal of

the DAGuE engine is to resolve data dependencies and move

data for the upper layer application. To do this, the engine

introduces an accounting of data and allocates memory to

receive the new data. So, all network data are received in a

newly allocated buffer that will be garbage collected by the

system. Furthermore, the communications and the treatment

of the tasks are done on different threads, adding four to

six thread context switches to the latency. This is a different

behavior than the NetPIPE benchmark, which receives and

sends data “in-place” and does not use threads. For high-speed

networks this introduces a significant overhead that explains

the observed difference.

However, the DAGuE system is not designed to move small

data, but data in the order of magnitude of a matrix tile.

Figure 5 also show that for medium-size messages (64KB),

the difference between NetPIPE and DAGuE is small for

the Ethernet network, and it becomes small at 512KB for

high-speed networks. For the tested applications, the tile size

resulting from tuning varies from 200 × 200 (320KB) to

350× 350 (≈1MB), which is in the high efficiency range.

C. Application Benchmarking

Cholesky Factorization: The Cholesky factorization (or

Cholesky decomposition) is mainly used for the numerical

solution of linear equations Ax = b.This factorization of

an n × n real symmetric positive definite matrix A has the

form A = LLT where L is an n × n real lower triangular

matrix with positive diagonal elements. Due to its large

recognition, we used this factorization as a first use case for

the environment. We have implemented a tiled version of the

Cholesky factorization. As described in [19], a single step

of the algorithm is implemented by a sequence of calls to

the LAPACK and BLAS routines: SYRK, POTRF, GEMM,

TRSM. The tile Cholesky algorithm is identical to the block

Cholesky algorithm implemented in LAPACK, except for

 1

 10

 100

 1000

 10000

 100000

 1 2 4 8 1
6

 3
2

 6
4

 128
 256

 512
 1

k
 2

k
 4

k
 8

k
 16k

 32k
 64k

128k
256k

512k
 1M 2M 4M 8M

L
at

en
cy

 (
u

s)

Message Size (bytes)

MPI Netpipe - 2xETH 1G
DAGuE ping pong test - 2xETH 1G

MPI Netpipe - MX 10G
DAGuE ping pong test - MX 10G

MPI Netpipe - IB 20G
DAGuE ping pong test - IB 20G

Fig. 5. Round-Trip benchmark – comparison of DAGuE and NetPIPE on
Ethernet, Myricom and Infiniband networks.

�������������	
��

�����������������������������

��������������
����	
��

���

��������������
����	
��

���

������������������
����	
��

�����������������������
�����������������������������

Fig. 6. Pseudocode of the tile Cholesky factorization (right-looking version).

processing the matrix by tiles. Figure 6 shows the pseudocode

of the Cholesky factorization (the right-looking variant).

A parallel Cholesky factorization implementation is con-

trolled by several parameters: N defines the size of the input

matrix (N×N doubles), while NB defines the size of a tile, or

a block, in tiled, or blocked algorithms, respectively. A N×N
matrix is divided in NT ×NT tiles where NT ×NB = N .

When NB does not divide N , the last tile of each row or

column is padded with zeroes. No computation happens on

the padding but complete tiles are transferred over the network

nonetheless. Two other parameters, P and Q, control the

process grid used to map the block cyclic distribution of the

tiles on the computing resources. According to [20] and to our

experiments, the best performance is achieved when using a

process grid that is square or closest to square with P ≤ Q,

as it balances the communications and computations across

the nodes. Consequently, for all the results presented in this

paper, the process grid follows this rule. NB has been tuned

experimentally for each software, the results are generated

using the best overall performing NB.

In the rest of the paper, for all figures that present perfor-

mance in GFLOP/s, we provide the theoretical performance of

the platform computed as the frequency of a core, times the

depth of the pipeline of the core, times the number of cores.

We also provide the GEMM peak (matrix-matrix product)

performance of the platform. GEMM peak is measured as

the best performance obtained by a single core computing a

matrix-matrix multiply using the same numerical library as

the Cholesky factorization (BLAS), while the other cores are

computing independent, identical, GEMMs. This is considered

1154115011501150115011551155

 50

 60

 70

 80

 90

 100

 120
 160

 200
 260

 300
 340

 460
 640

 1000

%
 e

ff
ic

ie
n

cy

Block Size (NB)

1 Nodes (8 cores)

4 Nodes (32 cores)

81 Nodes (648 cores)

Fig. 7. Performance (relative to the theoretical peak) of the DAGuE Cholesky
Factorization as function of the Tile Size (Griffon platform).

as the practical peak performance of the platform. All bench-

marks that follow only consider double precision operations.

ScaLAPACK and DSBP: We compare the performances

of the Cholesky factorization with two other implementa-

tions. ScaLAPACK [20] is the reference implementation for

distributed parallel machines. Like LAPACK, ScaLAPACK

routines are based on block partitioned algorithms to improve

cache reuse and reduce data movement. We used the vendor

ScaLAPACK and BLAS implementations (from MKL). DSBP

[15] is a tailored implementation of the Cholesky factorization

using 1) a tiled algorithm, 2) a specific data representation

suited for Cholesky, and 3) a static scheduling engine. We

used DSBP version 2008-10-281.

1) Impact of task granularity: In Figure 7, we investigate

the effect of task granularity on the performance of the DAGuE

Cholesky Factorization at different node scales and input

matrix sizes. For each run, we took the smallest matrix size

that is bigger than a target T and still divisible by the tile

size. For one node, the target T1 is 13, 600; for four nodes, the

target T4 is 26, 880; for 81 nodes, the target T81 is 120, 000.

To compare all runs in a normalized way, the figure represents

the efficiency as a percentage of the theoretical peak.

All curves present the same general shape: the performance

first increases with the block size until a peak, then decreases

slowly when the block size increases. For a single node, this

is the effect of the optimization of cache reuse in the BLAS

kernel. For a distributed run, the optimal block size is the

result of a trade-off between an ideal size for optimizing

the cache effects in the kernel, network efficiency and avail-

able parallelism. As seen in Figure 5, starting at 1MB, the

DAGuE engine reaches network saturation. Thus, for blocks

of 360× 360 elements and larger, the transfer time increases

linearly with the amount of data (thus as the square of the

block size). Smaller block sizes experience a lower network

efficiency. However, when the size of the matrix is large, there

are enough tasks ready to be scheduled at all times to overlap

communication with computation, and as a consequence, block

size tuning mostly depends on the BLAS kernels.

2) Problem Scaling: Figure 8 presents the performance of

the Cholesky Factorization when scaling the problem size.

We ran the different Cholesky Factorizations on the Griffon

platform, with 81 nodes (648 cores) varying the problem size
1available online at http://www8.cs.umu.se/∼larsk/index.html

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 13600
 26860

 40120
 53380

 66980
 80240

 93500
 106760

 120020
 130000

G
F

lo
p

/s

Matrix size (N)

Theoretical peak
GEMM peak

DAGuE (NB=340)
DSBP (NB=340)

ScaLAPACK (NB=120)

Fig. 8. Problem Scaling of the Cholesky Factorization, on 81 nodes (Griffon
platform).

(from 13, 600× 13, 600 to 130, 000× 130, 000). We took the

best block value for each implementation; block sizes were

tuned as demonstrated in Figure 7 for DAGuE.

When the problem size increases, the total amount of

computation increases as the cube of the size, while the total

amount of data increases as the square of the size. For a

fixed block size, this also means that the number of tiles

in the matrix increases with the square of the size, and so

does the number of tasks to schedule. Therefore, the global

performance of each benchmark increases until a plateau is

reached. On the Griffon platform, the amount of available

memory was not sufficient to reach the plateau with either

implementation.

Figure 8 shows that for small size problems, DSBP obtains a

better performance than DAGuE. DSBP is using a data format

specifically tailored for the Cholesky factorization (exploiting

the symmetry of the matrix). As a consequence, DSBP does

not require as much parallelism as DAGuE to overlap the

communications with computation. When DAGuE has enough

data per node to overlap all communication with computation,

the dynamic scheduling of DAGuE utilizes the computing

resources and the network better, up to 70% of the theoretical

peak (75% of GEMM-peak).

3) Impact of intra-node versus inter-node communication:

Figure 9 presents the performance per core, for a fixed

total number of cores, when varying the repartition between

distributed memory and shared memory accesses. Even using

the inefficient Ethernet network, the performance per core only

decreases slightly when replacing shared memory computation

by MPI distributed messaging, outlining the nearly perfect

overlap achieved by the communication engine.

 0

 2

 4

 6

 8

 10

 4: 1x4
 4: 2x2

 4: 4x1
 8: 2x4

 8: 4x2
16: 4x4

16: 8x2

G
F

L
O

P
/s

 p
er

 c
o

re

#total cores: nodes x cores

DAGuE (NB=260)

Fig. 9. Performance comparison at fixed total number of cores between
distributed and shared memory performance with N=18200 (Dancer platform,
2xGEthernet).

1155115111511151115111561156

 0

 1000

 2000

 3000

 4000

 5000

 6000

8 32 64 200 288 392 512 648

G
F

lo
p

/s

Number of cores

Theoretical peak
GEMM peak

DAGuE (NB=340)
DSBP (NB=340)

ScaLAPACK (NB=120)

Fig. 10. Weak Scalability of the Cholesky Factorization, starting from
N=13,600 for 8 cores (Griffon platform).

4) Weak Scalability: Figure 10 presents the weak scalability

study of the Cholesky Factorization. The initial workload for a

single node (8 cores) experiment is a 13, 600×13, 600 matrix.

This matrix size is scaled up accordingly to the number of

nodes to keep the per core workload constant, up to N =

120, 000 for an 81 node (648 cores) deployment.

Clearly, all benchmarks scale almost perfectly, attaining

49% of the GEMM peak for ScaLAPACK, 66% for DSBP,

and up to 78% for DAGuE. All runs in the figure are done

with a square process grid, the best process grid for Cholesky

factorization. The only exception is the point at 384 cores (48

nodes, 8 cores per node). In this case, we used a process grid

of 6 × 8 for the DAGuE engine, and 16 × 24 for DSBP and

ScaLAPACK. This measurement was added to demonstrate

that all benchmarks suffer from a similar downgrade of per-

formance when the grid is not perfectly square.

5) Strong Scalability: Figure 11 presents the strong scala-

bility study for the Cholesky factorization (i.e., evolution of

the performance for a given matrix size, when increasing the

number of computing resources participating in the factoriza-

tion). For Figure 11(a), we used the largest available matrix

size for the smallest number of nodes (93, 500× 93, 500) and

the most efficient block size after tuning (340 × 340). For

Figure 11(b), we always used the same number of nodes (81),

but varied only the number of cores, so we chose the smallest

matrix size for which benchmarks were able to obtain the best

performances (120, 020× 120, 020).

The figure shows that, for a fixed matrix size, the perfor-

mance of both tiled factorizations (DAGuE and DSBP) scales

almost linearly. Because the same matrix is distributed on an

increasing number of nodes, the ratio between computations

and communications decreases with the number of nodes. As a

consequence, the efficiency of the benchmark decreases when

the number of cores increases. ScaLAPACK seems to suffer

more from this effect, and is consequently unable to continue

scaling after 512 cores for this matrix size.

Figure 11(b) illustrates that the DAGuE and DSBP ap-

proaches are best fitted for clusters with many cores. We were

able to run on a larger matrix because even at 2 cores per node,

the whole memory of the 81 nodes is available. As shown

in [15], DSBP data representation enables it to outperform

ScaLAPACK. Because DAGuE is designed as a hybrid system,

it scales linearly with the number of cores, as long as enough

parallelism enables to feed all the threads. At 2 cores per

node, the problem specific data representation of DSBP is

more beneficial than the scaling provided by the hybrid and

more generic approach of DAGuE. However, for larger core

counts per node, the dynamic scheduling of DAGuE exhibits

a better use of the local computing resources, allowing it to

surpass DSBP.

6) Generality of DAGuE: Because the existence of DSBP

gives a comparison point against a similar tiled factorization

algorithm, but using a static scheduling, in this paper we

mostly focused our results on the Cholesky factorization. How-

ever, we have also used the DAGuE framework to implement

two other well known Dense Linear Algebra factorization

algorithms: the tiled version of QR [21] and the tiled version

of LU [19]. Moreover, a working prototype for the Sparse

Linear Algebra GMRES kernel is underway. However, due to

lack of space there results are not presented in this paper.

V. CONCLUSION

With the emergence of massively multicore architectures,

the classical approach based on MPI SPMD programming

model is becoming inefficient. Problems with memory band-

width, latency and cache fragmentation will, therefore, tend to

become more severe, resulting in communication imbalance.

Furthermore, network bandwidth (between parallel processors)

and latency are improving, but at significantly different rates

than the increase of operations per second performed by the

CPU. Specifically, network bandwidth and latency improve

by 26%/year and 15%/year respectively, while processing

speed increases by 59%/year. Therefore, the shift in algorithm

properties, from computation-bound toward communication-

bound is expected to become striking in the near future. This

is demonstrated by our experiments by the fact that ScaLA-

PACK, a very efficient, but 20 year old software package,

underperforms on modern architectures. The DAGuE engine

proposed in this paper tackles this problem by proposing a

generic DAG engine to express task dependencies at a finer

granularity. By specifically targeting clusters of multi-cores,

with a hybrid programming model mixing explicit message

passing and multi-threaded parallelism, DAGuE automatically

extracts more asynchrony from the algorithms, and therefore

brings the application performance closer to the physical peak.

Moreover, algorithms expressed as DAGs have the potential

to alleviate the user from focusing on the architectural issues,

while allowing the engine to extract the best performance from

the underlying architecture.

In this paper, the DAGuE engine performance has been

investigated using synthetic benchmarks, underlining a very

good efficiency from a task granularity of a few microseconds.

The Cholesky factorization has been implemented using the

JDF representation to demonstrate the performance of the

system on a realistic workload. The performance of this

algorithm has been compared to the classical approach for

distributed systems programming, represented by the Cholesky

ScaLAPACK algorithm, and a similar optimized version of

the tiled Cholesky algorithm called DSBP. The DAG/Tiled

1156115211521152115211571157

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

200 288 392 512 648

G
F

lo
p

/s

Number of cores

Theoretical peak
GEMM peak

DAGuE (NB=340)
DSBP (NB=340)

ScaLAPACK (NB=120)

(a) Varying the number of nodes for N=93,500.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1 2 3 4 5 6 7 8

G
F

L
O

P
/s

Number of cores per nodes

Theoretical peak
GEMM peak

DAGuE (NB=340)
DSBP (NB=340)

ScaLAPACK (NB=120)

(b) Varying the number of cores per node, with 81 nodes and N=120,020

Fig. 11. Strong Scalability of the Cholesky Factorization (Griffon platform)

algorithm approach clearly outperforms ScaLAPACK, both in

terms of scalability and performance, with an efficiency almost

doubled in certain instances. Besides being generic, because

it benefits from more asynchrony from its dynamic and cache

aware scheduling, in most cases the DAGuE engine compares

favorably in terms of performance against the Cholesky spe-

cific DSBP tiled algorithm implementation.

REFERENCES

[1] J. A. Sharp, Ed., Data flow computing: theory and practice. Ablex
Publishing Corp, 1992.

[2] J. Yu and R. Buyya, “A taxonomy of workflow management systems
for grid computing,” Journal of Grid Computing, Tech. Rep., 2005.

[3] O. Delannoy, N. Emad, and S. Petiton, “Workflow global computing with
YML,” in 7th IEEE/ACM International Conference on Grid Computing,
september 2006.

[4] A. Buttari, J. Dongarra, J. Kurzak, J. Langou, P. Luszczek, and S. Tomov,
“The impact of multicore on math software,” in Applied Parallel

Computing. State of the Art in Scientific Computing, 8th International

Workshop, PARA, ser. Lecture Notes in Computer Science, vol. 4699.
Springer, 2006, pp. 1–10.

[5] E. Chan, F. G. Van Zee, P. Bientinesi, E. S. Quintana-Ortı́, G. Quintana-
Ortı́, and R. van de Geijn, “Supermatrix: a multithreaded runtime
scheduling system for algorithms-by-blocks,” in PPoPP ’08: Proceed-

ings of the 13th ACM SIGPLAN Symposium on Principles and practice

of parallel programming. ACM, 2008, pp. 123–132.

[6] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou,
H. Ltaief, P. Luszczek, and S. Tomov, “Numerical linear algebra on
emerging architectures: The PLASMA and MAGMA projects,” Journal

of Physics: Conference Series, vol. 180, 2009.

[7] R. Dolbeau, S. Bihan, and F. Bodin, “HMPP: A hybrid multi-core
parallel programming environment,” in Workshop on General Purpose

Processing on Graphics Processing Units (GPGPU 2007), 2007.

[8] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU:
A Unified Platform for Task Scheduling on Heterogeneous Multicore
Architectures,” in Euro-Par 2009 Euro-par’09 Proceedings, ser.
LNCS, Delft Pays-Bas, 2009. [Online]. Available: http://hal.inria.fr/
inria-00384363/en/

[9] J. Perez, R. Badia, and J. Labarta, “A dependency-aware task-based
programming environment for multi-core architectures,” in Cluster Com-

puting, 2008 IEEE International Conference on, 29 2008-oct. 1 2008,
pp. 142 –151.

[10] F. Song, A. YarKhan, and J. Dongarra, “Dynamic task scheduling for
linear algebra algorithms on distributed-memory multicore systems,” in
SC ’09: Proceedings of the Conference on High Performance Computing

Networking, Storage and Analysis. New York, NY, USA: ACM, 2009,
pp. 1–11, DOI: 10.1145/1654059.1654079.

[11] M. Cosnard and E. Jeannot, “Automatic Parallelization Techniques
Based on Compact DAG Extraction and Symbolic Scheduling,” Parallel

Processing Letters, vol. 11, pp. 151–168, 2001.

[12] M. Cosnard, E. Jeannot, and T. Yang, “Compact dag representation and
its symbolic scheduling,” Journal of Parallel and Distributed Computing,
vol. 64, no. 8, pp. 921–935, August 2004.

[13] E. Jeannot, “Automatic multithreaded parallel program generation for
message passing multiprocessors using parameterized task graphs,”
in International Conference ’Parallel Computing 2001’ (ParCo2001),
september 2001.

[14] P. Husbands and K. A. Yelick, “Multi-threading and one-sided commu-
nication in parallel lu factorization,” in Proceedings of the ACM/IEEE

Conference on High Performance Networking and Computing, SC 2007,

November 10-16, 2007, Reno, Nevada, USA, B. Verastegui, Ed. ACM
Press, 2007.

[15] F. G. Gustavson, L. Karlsson, and B. Kågström, “Distributed SBP
cholesky factorization algorithms with near-optimal scheduling,” ACM

Trans. Math. Softw., vol. 36, no. 2, pp. 1–25, 2009.
[16] F. Broquedis, J. Clet Ortega, S. Moreaud, N. Furmento, B. Goglin,

G. Mercier, S. Thibault, and R. Namyst, “hwloc: a Generic Framework
for Managing Hardware Affinities in HPC Applications,” in PDP 2010

- The 18th Euromicro International Conference on Parallel, Distributed

and Network-Based Computing, IEEE, Ed., Pisa Italy, 02 2010.
[Online]. Available: http://hal.archives-ouvertes.fr/inria-00429889/en/

[17] R. Bolze, F. Cappello, E. Caron, M. J. Daydé, F. Desprez, E. Jeannot,
Y. Jégou, S. Lanteri, J. Leduc, N. Melab, G. Mornet, R. Namyst,
P. Primet, B. Quétier, O. Richard, E.-G. Talbi, and I. Touche, “Grid’5000:
A large scale and highly reconfigurable experimental grid testbed,”
IJHPCA, vol. 20, no. 4, pp. 481–494, 2006.

[18] Q. O. Snell, A. R. Mikler, and J. L. Gustafson, “Netpipe: A network
protocol independent performance evaluator,” in IASTED International

Conference on Intelligent Information Management and Systems, 1996.
[19] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, “A class of parallel

tiled linear algebra algorithms for multicore architectures,” Parallel

Comput., vol. 35, no. 1, pp. 38–53, 2009.
[20] J. Choi, J. Demmel, I. S. Dhillon, J. Dongarra, S. Ostrouchov, A. Pe-

titet, K. Stanley, D. W. Walker, and R. C. Whaley, “ScaLAPACK:
A portable linear algebra library for distributed memory computers
- design issues and performance,” in Applied Parallel Computing,

Computations in Physics, Chemistry and Engineering Science, Second

International Workshop, PARA ’95, Lyngby, Denmark, August 21-24,

1995, Proceedings, ser. Lecture Notes in Computer Science, J. Dongarra,
K. Madsen, and J. Wasniewski, Eds., vol. 1041. Springer, 1995, pp.
95–106.

[21] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, “Parallel tiled QR
factorization for multicore architectures,” Concurr. Comput. : Pract.

Exper., vol. 20, no. 13, pp. 1573–1590, 2008.

1157115311531153115311581158

